On the number of conjugacy classes of a permutation group
نویسندگان
چکیده
We prove that any permutation group of degree n ≥ 4 has at most 5(n−1)/3 conjugacy classes.
منابع مشابه
On the Mark and Markaracter Tables of Finite Groups
Let G be a finite group and C(G) be the family of representative conjugacy classes of subgroups of G. The matrix whose H,K-entry is the number of fixed points of the set G/K under the action of H is called the table of marks of G where H,K run through all elements in C(G). Shinsaku Fujita for the first time introduced the term “markaracter” to discuss marks for permutation representati...
متن کاملCOMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS
Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...
متن کاملThe ranks of the classes of $A_{10}$
Let $G $ be a finite group and $X$ be a conjugacy class of $G.$ The rank of $X$ in $G,$ denoted by $rank(G{:}X),$ is defined to be the minimal number of elements of $X$ generating $G.$ In this paper we establish the ranks of all the conjugacy classes of elements for simple alternating group $A_{10}$ using the structure constants method and other results established in [A.B.M. Bas...
متن کاملOn the Regular Power Graph on the Conjugacy Classes of Finite Groups
emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.
متن کاملFINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES
Let G be a finite group and Z(G) be the center of G. For a subset A of G, we define kG(A), the number of conjugacy classes of G that intersect A non-trivially. In this paper, we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them.
متن کاملNilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 133 شماره
صفحات -
تاریخ انتشار 2015